
CodeArts Repo

Best Practices

Issue 01

Date 2023-09-05

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Git on CodeArts Repo... 1
1.1 Overview.. 1
1.2 Cloud Repository Operations.. 3
1.3 Local Development on Git... 8

2 Migrating the Repository to CodeArts Repo...14

3 Code Review Practice... 20

CodeArts Repo
Best Practices Contents

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. ii

1 Git on CodeArts Repo

Overview

Cloud Repository Operations

Local Development on Git

1.1 Overview

Purpose
This document is intended to help developers who are interested in Git to better
use Git and apply Git in the CodeArts practices.

Git Overview
Git is a distributed version control system (VCS). VCSs manage all code revisions
during software development. They store and track changes to files, and record
the development and maintenance of multiple versions. They can be used to
manage any helpful documents apart from code files. VCSs are classified into
centralized version control systems (CVCSs) and distributed version control
systems (DVCSs).

Centralized Version Control Systems
A CVCS has a central server that contains all development data, and a number of
clients (computers) that store snapshots of the files in the central server at one
point. That means the change history of project files is kept only in the central
server, but not on the clients. Therefore, developers must pull the latest version of
files from the central server each time before starting their work.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 1

Common CVCSs include Concurrent Versions System (CVS), Visual SourceSafe
(VSS), Subversion (SVN), and ClearCase.

The advantages and disadvantages of CVCSs are listed below.

Table 1-1 Advantages and disadvantages of CVCSs

Advantages Disadvantages

● Easy to use.
● Granular permission control on

the directory level.
● Large storage space is not

required on the clients because
they do not store the entire copy
of the code files.

● A highly stable network is required
since developers must work online.

● If the server breaks down, the
development work is suspended.

● All data will be lost if the hard disk of
the central server is corrupted and no
proper backup is kept.

Distributed Version Control Systems
In DVCSs, every client is a complete mirror of the code repository. All data,
including the change history of project files, is stored on each client. In other
words, there is not a central server in this distributed system. Some companies
which use Git may call a computer as the "central server." However, that "central
server" is in nature the same as other clients except for the fact that it is used to
manage collaboration.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 2

Common DVCSs include Git, Mercurial, Bazaar, and BitKeeper.

The advantages and disadvantages of DVCSs are listed below.

Table 1-2 Advantages and disadvantages of DVCSs

Advantages Disadvantages

● Each client stores a complete copy
of the code repository, including
tags, branches, and version
records.

● Offline commits enable easy
cross-distance collaboration.

● Branches are created and deleted
at a low cost, and are fast to be
checked out.

● High learning thresholds.
● Branches can be created only for the

entire repository but not for
individual directories.

1.2 Cloud Repository Operations
Preparations

● You have registered an account for CodeArts Repo.
● You already have a Git client.
● A project has been created.

Cloud Repositories
CodeArts Repo allows you to create, clone, and manage cloud repositories. You
can manage branches, tags, repository members, and keys, and perform

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00021sm.html

operations on code, including committing, pulling, pushing, viewing, and online
editing. For more details about cloud repositories, see Product Overview.

Creating an Empty Repository
1. On the CodeArts Repo homepage, click New Repository.

2. Enter the basic repository information, as shown in the following figure.

3. Click OK to create the repository. The repository list page is displayed.

Setting the SSH Keys or HTTPS Password

SSH keys and HTTPS password are credentials for communication between a client
and server. Set them before you clone or push a repository on your computer.

Setting SSH Keys

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/productdesc-codeartsrepo/codeartsrepo_01_0002.html

SSH keys are used when a client communicates with CodeArts Repo over the SSH
protocol. If you have downloaded Git Bash for Windows and generated an SSH
key pair in the process, skip this section.

Step 1 Open the Git client (Git Bash or Linux CLI), enter the following command, and
press Enter for three times.
ssh-keygen -t rsa -C "<your_email_address>"

The generated SSH key pair is stored in ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub by
default.

Step 2 Add the SSH key to CodeArts Repo.

Open the Git client (Git Bash or Linux CLI) and print the SSH key in ~/.ssh/
id_rsa.pub.

Step 3 Copy the preceding SSH key, log in to your CodeArts Repo, click the alias in the
upper right corner, and choose This Account Settings > SSH Keys.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 5

Step 4 On the SSK Keys page, click Add SSH Key. In the displayed Add SSH Key page,
enter the information shown in the following figure and click OK. A message is
displayed, indicating that the operation is successful.

The SSH key has been added. You can proceed to set an HTTPS password.

----End

Setting an HTTPS Password

An HTTPS password is used when a client communicates with CodeArts Repo over
HTTPS. To set an HTTPS password, perform the following steps:

Step 1 Log in to the CodeArts Repo, click the alias in the upper right corner, and choose
This Account Settings > HTTP Password.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 6

Step 2 Click Set new password, and then click Change to change the password. (If you
have set an HTTPS password and are using it, click Change.)

Step 3 Enter the new password and email verification code, select I have read and agree
to the Privacy Statement and CodeArts Service Statement, and click OK. A
message is displayed, indicating that the operation is successful.

----End

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 7

1.3 Local Development on Git

Background
After creating a repository with a README file in CodeArts Repo, an architect or
project manager pushes the architecture code to the repository. Other developers
then clone the architecture code to their local computers for incremental
development.

NO TE

● Git supports code transmission over SSH and HTTPS. The SSH protocol is used as an
example.

● If you want to use the HTTPS protocol, download the HTTPS password, and enter the
HTTPS username and password when cloning or pushing code.

● The SSH URL and HTTPS URL of the same repository are different.

Pushing Architecture Code
1. Open the architecture code on the local computer. Ensure that the name of

the root directory is the same as that of the code repository created in the
cloud. Right-click on the root directory and choose Git Bash Here.

2. Push local code to the cloud.
Run commands on Git Bash as instructed below.

a. Initialize a local code repository. After this command is executed, a .git
directory is generated in D:/code/repo1/.
$ git init

b. Associate the local repository with the one in the cloud.
$ git remote add origin repoUrl

You can switch to the repository details page, click Clone/Download, and
click the highlighted tab in the following figure to obtain the repoUrl
value.

c. Push code to the cloud repository.
$ git add .
$ git commit -m "init project"

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 8

$ git branch --set-upstream-to=origin/master master
$ git pull --rebase
$ git push

Cloning Code
Clone the architecture code from the cloud to the local computer.

1. In the directory where you want to clone the code, right-click and choose Git
Bash Here.

2. Run the following command to clone the repository. Click Clone/Download
and click the highlighted tab in the following figure to obtain the repoUrl
value
$ git clone repoUrl//Clone the code from the remote repository to the local computer.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 9

Committing Code
A change travels from the working directory, stage, local repository to the remote
repository.

Executing corresponding Git commands can move a file between the four areas.

The following commands are involved:

1. #git add/rm filename //Add changes from the working directory to the stage
after creating, editing, or deleting files.

2. #git commit –m "commit message" //Commit the files from the stage to
the local repository.

3. #git push //Push the files from the local repository to the remote one.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 10

Performing Branch Operations
● Create a branch.

In Git, creating a branch is not to copy a repository, but to create a HEAD, a
movable pointer pointing to the last commit. A branch in nature is a file that
contains the 40-byte SHA-1 checksum of the commit it points to.
#git branch branchName commitID

A new branch is pulled based on the specified commit ID. If no commit ID is
specified, the branch is pulled from the commit that HEAD points to.
For example, to create a feature branch, run git branch feature.

● Check out a branch.
Run the following command:
#git checkout branchName

For example, to check out the feature branch, run git checkout feature.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 11

● Integrate branches.
There are two ways to integrate changes from one branch to another: git
merge and git rebase. The following describes the differences between them.
Assume that C4 and C3 are added to the master branch and hotfix branch
respectively. The hotfix branch is now ready to be integrated to the master
branch.
a. Three-way merge integrates C3, C4, and their most recent common

ancestor C2. Merging is simple to operate, but a new commit C5 is
created, resulting in a less readable commit history.
#git checkout master
#git merge hotfix

b. Git rebase saves the changes introduced to C4 as a patch in the .git/
rebase directory, synchronizes the patch C4' to the hotfix branch, and
applies the patch on top of C3.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 12

#git checkout master
#git rebase hotfix

● Resolve conflicts.

a. Scenario 1: The same line of code is changed in both the two branches to
merge.

Solution

i. Manually merge the change that you think is proper.
ii. Commit the change.

b. Scenario 2: A file is renamed in two different ways.
Solution

i. Check which name is correct and delete the incorrect one.
ii. Commit the change.

CodeArts Repo
Best Practices 1 Git on CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 13

2 Migrating the Repository to CodeArts
Repo

This practice shows how to migrate your local or cloud repository to CodeArts
Repo.

Application Scenario
With the development of code migration to the cloud, self-migration of
repositories tends to be normal. CodeArts Repo provides a complete operation
guide for you to migrate repositories to CodeArts Repo.

Principle
CodeArts Repo provides the following migration solutions based on the repository
storage mode:

CodeArts Repo
Best Practices 2 Migrating the Repository to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 14

● HTTP online import
You can directly import your remote repository to CodeArts Repo through
HTTP. However, the import duration is affected by network conditions and
repository capacity.

NO TE

You are advised to use the Git client push mode to migrate cloud repositories with a
large capacity.

● Git client push
Use the Git client to push code files in the local repository to CodeArts Repo.
– For users who store project files on the local computer, you are advised to

initialize the local project files to Git repository and then use the Git
client for migration.

– When you create a repository for a cloud repository with a large
capacity, you are advised to clone or download the cloud repository to
the local host, and then use the Git client to migrate the repository.

Prerequisites
● A project is available. If no project is available, create one first.
● A repository is available. If no repository is available, create one first.
● During repository migration, ensure that the network is stable and smooth.

CodeArts Repo
Best Practices 2 Migrating the Repository to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0018.html
https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0018.html

● The capacity of the repository to be migrated cannot exceed 2 GB. Otherwise,
the created repository will be frozen and cannot be used.

HTTP Online Import

Step 1 Go to the CodeArts homepage and click the target project name to access the
project.

Step 2 Choose Code > Repo.

Step 3 On the CodeArts Repo page, click the icon next to New Repository and select
Import Repository from the drop-down list box.

Step 4 On the Set Basic Information page, set the following parameters based on the
site requirements:

Table 2-1 External repository parameters

Parameter Ma
nda
tor
y

Description

Source
Repository
URL

Yes Enter a URL starting with http:// or https:// and ending
with .git.

Source
Repository
Access

Yes ● Username and password not required: Select this
option if the source repository is open-source (public).

● Username and password required: Select this option if
the source repository is private, and enter the username
and password for cloning HTTPS code.

Step 5 Select I have read and agree to the Privacy Statement and CodeArts Service
Statement and click Next.

Step 6 On the Create Repository page, set the parameters in the following table.

Table 2-2 Parameter description

Parameter Ma
nda
tory

Remarks

Repository
Name

Yes The name must start with a letter, digit, or underscore (_)
and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom. The name can contain a maximum of 200
characters.

Descriptio
n

No Enter a description for your repository. The description can
contain a maximum of 2,000 characters.

CodeArts Repo
Best Practices 2 Migrating the Repository to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 16

Parameter Ma
nda
tory

Remarks

Permission
s

No ● Make all project developers automatic repository
members
By default, the project manager is automatically added
as a repository member. If you select this option, the
project developer is automatically added as a repository
member.

Visibility Yes The options are as follows:
● Private

The repository is visible only to repository members.
Repository members can access the repository or commit
code.

● Public read-only
The repository is open and read-only to all visitors. You
can select an open-source license as the remarks.

Branch Yes You can choose to synchronize the default branch or all
branches of the source repository.

Schedule No Select Schedule sync into repo.
● The default branch of the source repository is

automatically imported to the default branch of the new
repository every day.

● The repository becomes a read-only image repository and
cannot be written. In addition, only the branches of the
third-party repository corresponding to the default
branch of the current repository are synchronized.

Step 7 Click OK. The repository list page is displayed.

----End

Git Client Push (Git Bash Is Used as an Example)
NO TE

Before pushing, ensure that SSH key or HTTPS password has been configured in the
CodeArts Repo service.

Step 1 Access the target CodeArts Repo.

Step 2 Initialize the local repository to Git repository for association with CodeArts Repo.

Open the Git Bash client in your repository and run the following command:

git init

The following figure shows that the initialization is successful. The current folder is
the local Git repository.

CodeArts Repo
Best Practices 2 Migrating the Repository to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0010.html

Step 3 Bind the local repository to CodeArts Repo.

1. Go to the CodeArts Repo and obtain the repository address.
2. Run the remote command to bind the local repository to the cloud repository.

git remote add <repository_alias> <repository_address>

Example:
git remote add origin git@*****/java-remote.git # Change the address to that of your repository.

NO TE

– By default, origin is used as the repository alias when you clone a remote
repository to the local computer. You can change the alias.

– If the system displays a message indicating that the repository alias already exists,
use another one.

– If no command output is displayed, the binding is successful.

Step 4 Pull the master branch of the CodeArts Repo to the local repository.

This step is performed to avoid conflicts.

git fetch origin master # Change origin to your repository alias.

Step 5 Commit local code files to the master branch.

Run the following commands:

git add .
git commit -m "<your_commit_message>"

The following figure shows a successful execution.

Step 6 Bind the local master branch to the CodeArts Repo master branch.
git branch --set-upstream-to=origin/master master # Change origin to your repository alias.

The following figure is displayed, indicating that the merged repository has been
placed in the working directory and repository.

Step 7 Merge the files in the CodeArts Repo repository and local repository and store
them locally.
git pull --rebase origin master # Change origin to your repository alias.

The following figure is displayed, indicating that the merged repository has been
placed in the working directory and repository.

CodeArts Repo
Best Practices 2 Migrating the Repository to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 18

Step 8 Push the local repository to overwrite the CodeArts Repo repository.

Run the push command because the repositories have been bound:

git push

After the operation is successful, pull the repository to verify that the version of
the CodeArts Repo repository is the same as that of the local repository.

----End

CodeArts Repo
Best Practices 2 Migrating the Repository to CodeArts Repo

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 19

3 Code Review Practice

NO TE

Reviews and Review Template support only users of the professional edition or higher.

Background
Code review refers to the process in which developers assign other personnel to
read and review the code after designing, compiling, and debugging the code. The
purpose of code review is to find standardization and correctness problems about
the format, logic, and syntax in the code, thus ensuring the quality of the code.
The cost of finding code problems in the code review phase is the lowest.
Therefore, strict and careful code review is necessary to improve code quality. To
help you review code more efficiently and quickly, you can add a review template
in CodeArts Repo as required.

Prerequisites
● A project is available. If no project is available, create one first.

NO TE

● If you purchase a CodeArts service package, you need to create a project in
CodeArts Req.

● If you purchase a CodeArts Repo service package, you need to create a Scrum or
an IPD project when creating a repository.

● A repository is available. If no repository is available, create one first.

Procedure
Before code review, the administrator needs to perform the following
management settings:

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codehub/repo_ug_00035.html

Figure 3-1 Code review procedure

This document describes how to set a review, review template, and review
notification, and create and resolve a review or comment. The procedure is as
follows:

● Review Settings
● Review Template Settings
● Review Notification Settings
● Create a Review or Comment
● Resolve a Review or Comment

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 21

Review Settings

The review setting is used to standardize the review and configure the review
template. The setting takes effect only for the configured repository. Only the
repository administrator and owner can view the page and have the setting
permission.

Step 1 Go to the CodeArts homepage and click the target project name to access the
project.

Step 2 Choose Code > Repo.

Step 3 Go to the repository details page and choose Settings > Policy Settings >
Reviews. The Reviews page is displayed.

Step 4 Select Enable comment types and modules as required.

Step 5 Configure review types.
● Enable preset comment types

If you select Enable preset comment types, you can directly use the preset
review comment categories.

● Customize category
You can customize the review comment category. Enter a type name, for
example, code specification problem, and press Enter to save the settings.

NO TE

The name can contain a maximum of 200 characters. A maximum of 20 names can be
created.

Step 6 Enter a category name in the text box under Comment Modules.

NO TE

The name can contain a maximum of 200 characters. A maximum of 20 names can be
created.

Step 7 Select Mandatory fields to Verify for Comment Creation/Editing as required.

Step 8 Click Submits.

----End

Review Template Settings

To configure comment templates, you can choose Settings > Template
Management > MR Comment Templates on the repository details page. You can
create, edit, and delete a review template, and customize template information
such as Severity, Assigned to, Comment category, Comment module, and
Description. When adding a review, you can select a review template. The
template content will be automatically applied to the merge request or the code
file to be reviewed. The settings take effect only for the repository configured.
Only the repository administrator and owner can view the page and have the
setting permission.

You can create a review template by referring to Table 3-1.

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 22

Table 3-1 Parameter description

Parameter Description

Template name Mandatory. Name of the template to be created.
For example, the code review template.

Set as default Optional. If this parameter is selected, this
template is used by default during reviewing.

Severity Optional. Classified into the following types based
on problem severity: Fatal, Major, Minor, and
Suggestion. For example, set the value of Severity
to Minor.

Assigned to Optional.
● If this parameter is set to empty:

– When a review is added to an MR, the
review is assigned to the MR creator by
default.

– When a review is added to a file or commit,
the review is not assigned by default.

● If this parameter is set to the MR Creator or
Committer.
– When a review is added to an MR, the

review is assigned to the MR creator by
default.

– When a review is added to a file or commit,
the review is assigned to the committer by
default.

● Assign to a specific person.
– When a review is added to an MR, the

review is assigned to a specific person by
default.

– When a review is added to a file or commit,
the review is assigned to a specific person by
default.

For example, assign the review to the MR creator.

Comment category This parameter is optional and is disabled by
default. You need to select Enable comment types
and modules first and configure the review types.
For details, see Review Settings.

Comment Modules This parameter is optional and is disabled by
default. You need to select Enable review
comment categories and modules first and
configure the review modules. For details, see
Review Settings.

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 23

Parameter Description

Description Optional. Enter the description of the template.
The description can be previewed. For example, the
code format is incorrect.

Set Review Comment Notification
To set notifications, choose Settings > General Settings > Notifications on the
repository details page.

Figure 3-2 Notification settings page

● Comment: You can manually set to send an email notification to the MR
creator.

● Resolve Comment: You can manually set to send an email notification to the
MR creator.

Create a review or comment
You can add a review for a file on the Files and Commits submenus of the Code
tab page, or on the Files Changed submenu of the Merge Requests tab page.

You can add comments for a merge request on Comments of the Merge
Requests details page, or add comments for a commit on Commits submenu of
the Code tab page.

The reviews added on the Files and Commits submenus of the Code tab page can
be viewed on the Reviews for commit of the Reviews tab page.

The reviews added on the the Files Changed submenu of the Merge Requests
tab page and the comments added on Comments of the Merge Requests details
page can be viewed on the Reviews for MR of the Reviews tab page.

● Click Code > Files to create a review.

Click the target file on the Files tab page, click the icon in the code line,
enter a review in the text box, and set a value for Severity and Assigned to.

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 24

For example, set Severity to Minor and Assigned to to MR Creator, and
select values for Comment type and Comment module from the drop-down
list box, and click OK.

Figure 3-3 Create a review

● Click Code > Commits to create a review.

Click the target file on the Commits tab page, click the icon in the code
line, enter a review in the text box, and set a value for Severity and Assigned
to. For example, set Severity to Minor and Assigned to to MR Creator, and
select values for Comment type and Comment module from the drop-down
list box, and click OK.

Figure 3-4 Create a review

● Click Merge Requests > Files Changed to create a review.

Go to the Files Changed submenu, click the icon in the code line, enter a
review in the text box, and set a value for Severity and Assigned to. For
example, set Severity to Minor and Assigned to to MR Creator, and select
values for Comment type and Comment module from the drop-down list
box, and click OK.

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 25

Figure 3-5 Create a review

● Click Merge Requests > details to create a comment.
Click target MR on the Merge Requests page. The merge request details page
is displayed. Click Comments, enter a comment, and click OK.

● On the Commits page, click a commit to switch to the Comments page. Then
you can create a comment.

Figure 3-6 Creating a comment

Resolve a review or comment
On the Reviews tab page, you can view Reviews for MR and Reviews for
commit.

● After modifying the code file based on the reviews on the Reviews for
commit, contact the committer for review. After the code file is approved,

change the status to .
● After modifying the code file in the merge request based on the reviews or

comments on the Reviews for MR, contact the committer to review the code

file. After the code file is approved, change the status to .

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 26

CodeArts Repo
Best Practices 3 Code Review Practice

Issue 01 (2023-09-05) Copyright © Huawei Technologies Co., Ltd. 27

	Contents
	1 Git on CodeArts Repo
	1.1 Overview
	1.2 Cloud Repository Operations
	1.3 Local Development on Git

	2 Migrating the Repository to CodeArts Repo
	3 Code Review Practice

